首页> 外文OA文献 >Constraints on southern hemisphere tropical climate change during the Little Ice Age and Younger Dryas based on glacier modeling of the Quelccaya Ice Cap, Peru
【2h】

Constraints on southern hemisphere tropical climate change during the Little Ice Age and Younger Dryas based on glacier modeling of the Quelccaya Ice Cap, Peru

机译:基于秘鲁Quelccaya冰盖的冰川模型,对小冰期和年轻树妖的南半球热带气候变化的约束

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

© 2015 The Authors. Improving the late Quaternary paleoclimate record through climate interpretations of low-latitude glacier length changes advances our understanding of past climate change events and the mechanisms for past, present, and future climate change. Paleotemperature reconstructions at low-latitude glaciers are uniquely fruitful because they can provide both site-specific information and enhanced understanding of regional-scale variations due to the structure of the tropical atmosphere. We produce Little Ice Age (LIA) and Younger Dryas (YD) paleoclimate reconstructions for the Huancané outlet glacier of the Quelccaya Ice Cap (QIC) and low-latitude southern hemisphere regional sea surface temperatures (SSTs) using a coupled ice-flow and energy balance model. We also model the effects of long-term changes in the summit temperature and precipitiation rate and the effects of interannual climate variability on the Huancané glacier length. We find temperature to be the dominant climate driver of glacier length change. Also, we find that interannual climate variability cannot adequately explain glacier advances inferred from the geomorphic record, necessitating that these features were formed during past colder climates. To constrain our LIA reconstruction, we incorporate the QIC ice core record, finding a LIA air temperature cooling at the ice cap of between ~0.7 °C and ~1.1 °C and ~0.4 °C and regional SSTs cooling of ~0.6 °C. For the YD paleoclimate reconstructions, we propose two limits on the precipitation rate, since the ice core record does not extend into the Pleistocene: 1) the precipitation rate scales with the Clausius-Clapeyron relationship (upper limit on cooling) and 2) the precipitation rate increases by 40% (lower limit on cooling), which is an increase about twice as great as the regional increases realized in GCM simulations for the period. The first limit requires ~1.6 °C cooling in ice cap air temperatures and ~0.9 °C cooling in SSTs, and the second limit requires ~1.0 °C cooling in ice cap air temperatures and ~0.5 °C cooling in SSTs. Our temperature reconstructions are in good agreement with the magnitude and trend of GCM simulations that incorporate the forcing mechanisms hypothesized to have caused these climate change events.
机译:©2015作者。通过对低纬度冰川长度变化的气候解释来改善第四纪晚期的古气候记录,可以增进我们对过去气候变化事件以及过去,现在和未来气候变化机制的理解。低纬度冰川的古温度重建是卓有成效的,因为它们既可以提供特定地点的信息,又可以增强对由于热带大气结构而引起的区域尺度变化的理解。我们使用耦合的冰流和能量为Quelccaya冰帽(QIC)的Huancané出口冰川和低纬度南半球区域海表温度(SST)生成小冰期(LIA)和更年轻的干旱(YD)古气候重建平衡模型。我们还对峰顶温度和降水速率的长期变化以及年际气候变化对Huancané冰川长度的影响进行了建模。我们发现温度是冰川长度变化的主要气候驱动因素。此外,我们发现年际气候变化并不能充分解释根据地貌记录推断的冰川进展,因此有必要在过去较冷的气候中形成这些特征。为了约束我们的LIA重建,我们结合了QIC冰芯记录,发现LIA空气温度在冰帽处约〜0.7°C到〜1.1°C和〜0.4°C之间,区域SST冷却约〜0.6°C。对于YD古气候重建,由于冰芯记录没有延伸到更新世,我们提出了两个降水速率限制:1)降水速率与克劳修斯-克拉珀龙关系成比例关系(降温上限)和2)降水速率增加了40%(冷却的下限),大约是该时期GCM模拟中实现的区域增长的两倍。第一个限制要求在冰帽空气温度下冷却约1.6°C,在SST中冷却约0.9°C,第二个限制要求在冰帽空气温度下冷却约〜1.0°C,在SST中冷却约〜0.5°C。我们的温度重建与GCM模拟的幅度和趋势非常吻合,GCM模拟包含了被假定为导致这些气候变化事件的强迫机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号